唐诗诗, 李宇轩, 唐圣晟, 刘庆华, 周毅. 基于SARIMA-LSTM模型的肾综合征出血热发病率预测研究. 2024. biomedRxiv.202407.00046
基于SARIMA-LSTM模型的肾综合征出血热发病率预测研究
通讯作者: 周毅, zhouyi@mail.sysu.edu.cn
DOI:10.12201/bmr.202407.00046
Research on Hemorrhagic Fever with Renal Syndrome Incidence Prediction Based on the SARIMA-LSTM Model
Corresponding author: ZHOU Yi, zhouyi@mail.sysu.edu.cn
-
摘要:目的/意义 探究前沿技术在肾综合征出血热(HFRS)发病率预测中的应用,梳理、组合多种时序分析方法,并评价模型效果,筛选最佳模型。方法/过程 利用2004-2020年全国HFRS发病率数据,分析基于统计学方法的SARIMA、STL-ARIMA、TBATS模型,基于神经网络的NNAR、LSTM模型,基于三种加权方式的SARIMA-LSTM组合模型的预测效果,利用RMSE、MAE、MAPE综合评价模型效果。结果/结论 SARIMA、LSTM为单一模型中较优模型,RMSE、MAE和MAPE分别为:0.01224、0.00981、18.43%,0.00998、0.00705、14.08%;SARIMA-LSTM组合模型相较单一模型效果均有提升,基于误差倒数法的SARIMA-LSTM组合模型为最优模型,三项评价指标值分别为:0.00940、0.00519、9.32%,筛选出的最佳模型以及组合策略,有望为HFRS发病预警系统模型设计提供技术支持与参考。
Abstract: Purpose/Significance To investigate the application of cutting-edge technologies in predicting the incidence of Hemorrhagic Fever with Renal Syndrome (HFRS), to compile and integrate various time-series analysis methods, and to evaluate model performance in selecting the optimal model. Method/Process Utilizing national HFRS incidence data from 2004 to 2020, the predictive effectiveness of models based on statistical methods: SARIMA, STL-ARIMA, and TBATS, neural network approaches: NNAR, LSTM, and combined models of SARIMA-LSTM with three different weighting schemes were analyzed. The performance of these models is comprehensively assessed using RMSE, MAE, and MAPE. Result/Conclusion The SARIMA and LSTM models are identified as the superior individual models, with their respective performance metrics—RMSE, MAE, and MAPE—recorded as follows: 0.01224, 0.00981, and 18.43% for SARIMA; 0.00998, 0.00705, and 14.08% for LSTM. The combined SARIMA-LSTM model demonstrates enhanced performance compared to individual models. The SARIMA-LSTM model optimized using the reciprocal of error method is deemed the optimal model, achieving significantly reduced error measures with values of 0.00940 for RMSE, 0.00519 for MAE, and 9.32% for MAPE. The selection of this optimal model and the strategic combination approach bodes well to offer technical support and guidance for the development of an early warning system model tailored to forecasting HFRS outbreaks.
Key words: hemorrhagic fever with renal syndrome; infectious disease surveillance and early warning; statistical model; machine learning; SARIMA-LSTM model提交时间:2024-07-18
版权声明:作者本人独立拥有该论文的版权,预印本系统仅拥有论文的永久保存权利。任何人未经允许不得重复使用。 -
图表
-
金丽珠, 葛辉, 郭青, 李少琼, 杜雪杰. 基于气象因素和机器学习的流感疫情预警研究. 2021. doi: 10.12201/bmr.202012.00008
赵坚, 赵玉, 徐小卫, 杨亚洲, 虞莹. 基于大数据与5G的传染病智能监测预警处置系统的设计及应用. 2023. doi: 10.12201/bmr.202305.00009
杜雪杰, 葛辉. 基于BP神经网络方法构建手足口病预测预警模型设计研究. 2021. doi: 10.12201/bmr.202102.00002
杨林. 冠状动脉周围脂肪衰减指数联合实验室指标预测急性冠脉综合征的研究. 2024. doi: 10.12201/bmr.202409.00001
阮旭凌, 刘琦, 郭志恒, 晏峻峰. 基于LDA和XGBoost算法的乳腺癌预测模型构建研究. 2022. doi: 10.12201/bmr.202106.00007
李晓瑛. 基于文献知识发现的传染病继发疾病挖掘分析研究. 2024. doi: 10.12201/bmr.202408.00057
王羚钰, 徐红. 老年骨量-肌量减少性肥胖综合征的治疗进展. 2024. doi: 10.12201/bmr.202411.00064
何源, 杨树杰, 曾英, 易海英, 黄杰, 甘斌, 魏贤, 唐艳林. 微创给药在极早产儿呼吸窘迫综合征的疗效观察. 2024. doi: 10.12201/bmr.202410.00018
高春柳, 张晗, 褚梦圆, 许凯凯, 项馨, 闫颖. Isthmin1蛋白在多囊卵巢综合征中作用机制的进展. 2024. doi: 10.12201/bmr.202411.00004
王杰, 王至诚, 娄帅, 董建成, 曹新志. 基于深度学习算法Mask R-CNN的甲状腺结节检测模型研究. 2024. doi: 10.12201/bmr.202411.00085
-
序号 提交日期 编号 操作 1 2024-05-30 bmr.202407.00046V1
下载 -
-
公开评论 匿名评论 仅发给作者
引用格式
访问统计
- 阅读量:300
- 下载量:3
- 评论数:0