王殊, 陈勇春, 郑葵葵, 周甲丰. 预测老年患者大脑中动脉瘤破裂风险的随机森林模型. 2025. biomedRxiv.202509.00035
预测老年患者大脑中动脉瘤破裂风险的随机森林模型
通讯作者: 周甲丰, 179254021@qq.com
DOI:10.12201/bmr.202509.00035
Random Forest Model for Predicting Rupture of Middle Cerebral Aneurysms in Elderly Patients
Corresponding author: ZHOU JIA FENG, 179254021@qq.com
-
摘要:目的:通过建立随机森林模型来预测老年患者大脑中动脉(MCA)瘤的破裂风险。方法:对温州医科大学附属第一医院2009年3月至2020年6月收治的MCA动脉瘤老年患者(年龄>60岁)资料进行回顾性分析,随机分为训练组和验证组(n=7:3),采用多因素Logistic回归分析老年患者MCA动脉瘤破裂的独立危险因素,据此建立随机森林模型来预测动脉瘤破裂风险,并通过其他四家医院的数据进行外部验证。采用受试者工作特征曲线(ROC)的曲线下面积(AUC)评估模型的预测效能。结果:共纳入226名患者242例MCA动脉瘤,训练组169例,内部验证组73例。外部验证组48例。多因素logistic回归分析显示,尺寸比、动脉瘤角度、高宽比及不规则形态是老年患者MCA动脉瘤破裂的独立危险因素。随机森林模型对训练组、内部验证组和外部验证组的预测效能分别为AUC=0.916(95%CI,0.878-0.946)、0.925(95%CI,0.874-0.968)和0.834(95%CI,0.725-0.932)。结论:预测老年患者大脑中动脉瘤破裂的随机森林模型具有较好的性能,可以用来辅助临床诊疗决策。
Abstract: Objective: To predict therisk of middle cerebral artery (MCA) aneurysm rupture in elderly patients by establishing a random forest model. Methods: A retrospective analysis was conducted on data from elderly patients (age > 60) with MCA aneurysms treated at the First Affiliated Hospital of Wenzhou Medical University between March 2009 and June 2020. The data were randomly divided into a training group and a validation group (n=7:3). Independent risk factors for MCA aneurysms rupture in elderly patients were obtained by unifactorial and multifactorial logistic regression, based on these a random forest model was constructed, which was externally validated using data from four other hospitals. Its predictive performance was evaluated using the area under the curve (AUC) of receiver operating characteristic (ROC). Results: A total of 242 MCA aneurysms from 226 patients were included, with 169 cases in the training group, 73 cases in the internal validation group, and 48 cases in the external validation group. Multifactorial logistic regression analysis showed that the size ratio, aneurysm angle, height-width ratio, and irregular morphology were independent risk factors for MCA aneurysms rupture in elderly patients. The random forest model achieved AUC values of0.916 (95% CI, 0.878–0.946), 0.925 (95% CI, 0.874–0.968), and 0.834 (95% CI, 0.725–0.932) for the training, internal validation, and external validation groups, respectively. Conclusion: The random forest model demonstrated excellent performance in predicting the risk of MCA aneurysm rupture in elderly patients and can be used to assist clinical decision-making.
Key words: intracranial aneurysm; elderly; middle cerebral artery; rupture; random forest提交时间:2025-09-15
版权声明:作者本人独立拥有该论文的版权,预印本系统仅拥有论文的永久保存权利。任何人未经允许不得重复使用。 -
图表
-
王婷婷, 周巍. 基于随机森林算法的高血压合并左室舒张功能障碍预测模型的构建与分析. 2025. doi: 10.12201/bmr.202503.00046
涂宇星, 陈益君. 基于加速康复外科理念的麻醉管理在颅内动脉瘤栓塞术中的应用进展. 2025. doi: 10.12201/bmr.202502.00034
韦云师, 莫伟, 向娅, 廖秋姣, 何柳, 凌朝灵, 陆启祥, 刘芳印. 老年髋部骨折患者术后谵妄风险预测模型的研究进展. 2024. doi: 10.12201/bmr.202409.00029
李鑫泰, 童理, 杨剑文. 类“脑梗死”影像的造影剂脑病1例及文献复习. 2024. doi: 10.12201/bmr.202406.00035
任嘉庆, 苏彬彬, 郑晓瑛. 我国中老年人口教育和健康相关关系的分析. 2022. doi: 10.12201/bmr.202111.00018
肖岑昕, 黄旭日, 赵伟丹. 血清铁在中老年社区获得性肺炎疾病识别的相关性评估. 2025. doi: 10.12201/bmr.202501.00002
陈间玲, 吴桂萍, 石荣丽. 广州市中老年人电子健康素养现状与提升路径研究. 2024. doi: 10.12201/bmr.202404.00032
陈冰融, 舒文秀, 罗柳飞, 童嘉琦, 乐静. 骨髓瘤患者发生3-4级骨髓瘤骨病的风险预测模型构建. 2024. doi: 10.12201/bmr.202410.00057
吴杭, 邓雄伟. 早期负重功能锻炼对距腓前韧带断裂患者术后功能及满意度的影响. 2025. doi: 10.12201/bmr.202506.00053
姚泓哲, 郭鑫龙, 杨林瀛. FAP/ALB、NLPR对老年CAP严重程度的预测价值. 2024. doi: 10.12201/bmr.202412.00057
-
序号 提交日期 编号 操作 1 2025-07-16 bmr.202509.00035V1
下载 -
-
公开评论 匿名评论 仅发给作者
引用格式
访问统计
- 阅读量:18
- 下载量: 0
- 评论数:0