马傲, 葛小玲. 人工智能大模型在医疗健康领域应用的研究. 2024. biomedRxiv.202408.00039
人工智能大模型在医疗健康领域应用的研究
通讯作者: 葛小玲, xlge@fudan.edu.cn
DOI:10.12201/bmr.202408.00039
Application of Artificial Intelligence Large Models in Healthcare:a Survey
Corresponding author: GE Xiaoling, xlge@fudan.edu.cn
-
摘要:医疗健康领域拥有丰富的多模态数据和开放多样的医疗健康场景,是人工智能大模型最具有应用前景的领域之一。基于基础硬件、设备与模型框架的人工智能大模型通过医疗文本、医疗影像或医疗多模态数据集开展预训练、微调、评估优化和利用进而完成模型构建。医疗健康大模型在辅助诊疗、医学影像研究、健康管理、生物医学研究、药物研发、医学考试与教育等领域获得成功应用,同时迎来数据安全风险、道德伦理风险和技术风险等挑战。为规范人工智能大模型技术的发展,部分国家制定相关法律法规和标准指南。医疗健康领域与人工智能的合作机遇与挑战并存,人工智能大模型技术仍需要不断优化发展,推动与医疗健康领域的更深度融合。
Abstract: The healthcare field has abundant multimodal data and open and diverse medical and health scenarios, which is one of the most promising fields for the application of artificial intelligence large models. Based on hardware, equipment and model framework, the AI large models utilizes medical text, medical image or medical multimodal datasets to carry out pre-training, fine-tuning, evaluation, optimization and utilization, thus achieves model building. The healthcare AI large model has been successfully applied in auxiliary diagnosis and treatment, medical imaging research, health management, biomedical research, drug research, medical examination and education, etc.However its also challenged by data security risks, moral and ethical risks, and technical risks. To regularize the development of AI large model technology, Some countries have formulated relevant laws, regulations, and standards . Opportunities and challenges coexist in healthcare cooperation with artificial intelligence, and artificial intelligence large model technology still needs to be continuously optimized and developed to promote deeper integration with the healthcare field.
Key words: artificial intelligence; large model; healthcare; intelligent application提交时间:2024-08-20
版权声明:作者本人独立拥有该论文的版权,预印本系统仅拥有论文的永久保存权利。任何人未经允许不得重复使用。 -
图表
-
郑琰莉, 韩福海, 李舒玉, 苏文星. 人工智能大模型在医疗领域的应用现状与前景展望. 2023. doi: 10.12201/bmr.202312.00027
史森中. 生成式人工智能(GAI)基层医疗应用风险及治理策略分析. 2024. doi: 10.12201/bmr.202408.00053
蔡自兴. 智慧医疗的临床应用与技术. 2021. doi: 10.12201/bmr.202012.00013
朱宇凡, 赵欣, 杨志强, 钟厚成, 蔡林, 谢远龙. “人工智能+医学”复合型人才培养展望. 2020. doi: 10.12201/bmr.202008.00010
谢俊祥, 张琳. 国内外医疗人工智能战略及细分领域现状分析. 2020. doi: 10.12201/bmr.202005.00243
施呈昊, 屠馨怡, 史佳伟, 陈红爽, 王琴潞, 邹海欧. 大语言模型在临床实践中应用的范围综述. 2024. doi: 10.12201/bmr.202406.00001
颜文城, 李俊震, 陈玫, 卢艳红. 人工智能助力口腔医学:在牙体牙髓病学领域的应用. 2021. doi: 10.12201/bmr.202102.00003
董琨, 杨芬, 杨扬. 人工智能在全科医师培训中的应用与思考. 2023. doi: 10.12201/bmr.202305.00011
司唯, 徐婷, 林家玥, 曹文婷, 朱爱勇. 人工智能技术在老年认知症筛查中的应用现状. 2024. doi: 10.12201/bmr.202407.00048
林金银, 陆长锋. 人工智能在医学高校图书馆应用的主要利益相关者分析. 2023. doi: 10.12201/bmr.202303.00001
-
序号 提交日期 编号 操作 1 2024-08-08 bmr.202408.00039V1
下载 -
-
公开评论 匿名评论 仅发给作者
引用格式
访问统计
- 阅读量:616
- 下载量:23
- 评论数:0