陈宇聪, 谭伟锋, 戎伟鑫, 韩春春, 王耿彬. 基于大语言模型的病历生成智能体研究与设计. 2025. biomedRxiv.202510.00038
基于大语言模型的病历生成智能体研究与设计
通讯作者: 谭伟锋, tanweifeng@jmszxyy.com.cn
DOI:10.12201/bmr.202510.00038
CHEN Yucong1, TAN Weifeng2,*, RONG Weixin1, HAN Chunchun1, WANG Gengbin1
Corresponding author: tanweifeng, tanweifeng@jmszxyy.com.cn
-
摘要:【摘要】目的/意义:以大语言模型为核心建立病历生成智能体,实现电子病历智能化生成,减轻临床病历书写压力。方法/过程:通过数据预处理和本地部署的大语言模型模拟对话生成,完成模型微调的数据储备,利用模型微调技术将通用大语言模型训练成病历生成专业模型,同时基于病历书写规范等标准建立本地知识库,最后以微调模型搭建病历生成智能体。结果/结论:通过模型微调的评估结果表明,大语言模型经过监督微调后,所生成的电子病历准确率更高,更符合电子病历规范要求。通过设计智能体工作流程与检索本地知识库检索校正,能使得生成病历文本更符合医疗质量控制要求。本研究通过结合多种技术构建病历生成智能体,所生成的电子病历具有更高的专业性和可靠性,为智能病历生成的应用和发展提供了经验参考和实证支持。
Abstract: 【Abstract】 Objective/Significance: To establish a medical record generation agent with a large language model as the core to realize the intelligent generation of electronic medical record instruments and reduce the pressure of clinical medical record writing. Method/Process: Through data cleaning and locally deployed large language model simulation for dialogue generation, the data reserve for model fine-tuning is completed, and model fine-tuning technology is utilized to train the general large language model into a professional model for medical record generation, meanwhile, a local knowledge base is established based on standards such as medical record writing specifications, and finally, the medical record generating agent is built with the fine-tuned model. Results/Conclusions: The evaluation results by model fine-tuning show that the medical record instruments generated by the large language model after supervised fine-tuning are more accurate and more in line with the requirements of medical record instrument specifications. By designing the workflow of intelligibles with retrieval of local knowledge base retrieval correction, it can make the generated medical record text more in line with the requirements of medical quality control. This study combines multiple technologies to construct a medical record generating agent, and the generated electronic medical record documents have higher professionalism and reliability, which provides empirical reference and empirical support for the application and development of intelligent medical record generation.
Key words: Medical; record generation, Large; language model, Agent, Model; fine-tuning, Knowledge; base提交时间:2025-10-22
版权声明:作者本人独立拥有该论文的版权,预印本系统仅拥有论文的永久保存权利。任何人未经允许不得重复使用。 -
图表
-
姜胜耀, 袁铖, 朱立峰, 李寅驰, 范亚蔚, 张维彦, 阮彤, 邵炜. 基于大模型微调的出院小结生成幻觉抑制方法. 2025. doi: 10.12201/bmr.202503.00005
牛宇翔, 葛珊衫, 王力华. 从传统NLP到大语言模型电子病历生成技术的探索与研究. 2024. doi: 10.12201/bmr.202412.00080
康一帅, 邵陈杰. 基于统一语言模型的中医文献问题生成算法. 2022. doi: 10.12201/bmr.202110.00044
郭炫志, 周武洁, 尚欣, 连春华, 詹开明, 林隆永. 基于 UNILM 的中医文献问题条件生成模型. 2021. doi: 10.12201/bmr.202110.00036
李日丽, 潘嘉明, 容世强, 孙晓翠, 易法令. 知识图谱与大语言模型融合在糖尿病健康管理中的应用进展. 2025. doi: 10.12201/bmr.202508.00035
吕婷钰, 李晓瑛, 刘宇炀, 杜晋华, 李心怡, 罗妍, 唐小利, 任慧玲, 刘辉, 尹浩. 中文医学知识大模型问答语料数据集构建研究. 2024. doi: 10.12201/bmr.202404.00002
吴宏, 胡军, 陈尔真, 董晨杰, 李建华, 叶琪. 基于大模型的医疗质控应用系统构建. 2025. doi: 10.12201/bmr.202503.00004
谢甲琦, 李政. 基于预训练语言模型的公众健康问句分类. 2021. doi: 10.12201/bmr.202101.00017
施呈昊, 屠馨怡, 史佳伟, 陈红爽, 王琴潞, 邹海欧. 大语言模型在临床实践中应用的范围综述. 2024. doi: 10.12201/bmr.202406.00001
王耀国, 唐诗诗, 刘泓泽, 安雨婷, 周毅. 基于本地大模型的骨质疏松专病数据库构建流程优化研究. 2024. doi: 10.12201/bmr.202410.00002
-
序号 提交日期 编号 操作 1 2025-08-19 bmr.202510.00038V1
下载 -
-
公开评论 匿名评论 仅发给作者
引用格式
访问统计
- 阅读量:21
- 下载量: 0
- 评论数:0

登录
注册




京公网安备