康宏宇, 徐晓巍, 郑思, 郝洁, 杨林, 王序文, 侯丽, 李姣. 新医科背景下R语言与机器学习产教研协同教学模式探索. 2025. biomedRxiv.202509.00006
新医科背景下R语言与机器学习产教研协同教学模式探索
通讯作者: 李姣, li.jiao@imicams.ac.cn
DOI:10.12201/bmr.202509.00006
Exploring an Industry-Education-Research Collaborative Teaching Model for the Course “R Programming and Fundamentals of Machine Learning” under the New Medical Education Initiative
Corresponding author: LI Jiao, li.jiao@imicams.ac.cn
-
摘要:目的/意义 探索新医科建设背景下,依托医学数据挖掘类课程构建产教研协同教学机制,推动复合型医学创新人才的系统化培养。 方法/过程 以医学专业本科生为对象,围绕《R语言程序设计与机器学习基础》课程设置“会学—会用—会创造”三位一体的课程目标,构建实践驱动、双师联动、技术赋能、多元评价的协同教学路径。通过企业教师深度参与、AI教学助手辅助教学、项目式学习驱动等方式,提升医学生的跨学科综合能力与实践创新能力。结果/结论 最新一届授课学生的数据显示,能够独立完成模型构建的学生比例从66.7%提升至85.0%,代码正确率由71.6%提升至91.7%,建模平均耗时由58分钟缩短至43分钟。问卷调查显示,91.7%的学生对课程表示“非常满意”,88.3%的学生认可双师型教学,93.3%的学生认为实践环节促进了理论知识的理解与应用。本研究构建的产教研协同教学模式有效提升了医学生在医学数据挖掘与智能技术领域的综合能力,具备良好的可复制性和推广价值,可为新医科背景下医学教育改革提供实践参考。
Abstract: Purpose/Significance Under the background of New Medical, medical universities are introducing medical data mining courses aligned with industry demands to cultivate compound medical talents. Method/Process This study targets undergraduate medical students and defines a triadic curriculum goal of “learning to learn, learning to apply, and learning to create” within the “R Programming and Fundamentals of Machine Learning” course. We developed a collaborative teaching pathway characterized by strong practice orientation, dual-teacher engagement, technological empowerment, and multi-dimensional assessment. By integrating deep involvement of industry mentors, AI-driven teaching assistants, and project-based learning, we aimed to enhance students’ interdisciplinary competencies and practical innovation skills. Result/Conclusion In the most recent cohort, 85.0 % of students in the experimental group independently completed model construction—significantly higher than 66.7 % in the control group—while code accuracy rose from 71.6 % to 91.7 % and average modeling time fell from 58 to 43 minutes. Survey data indicate that 91.7 % of participants were “very satisfied” with the course, 88.3 % endorsed the dual-teacher model, and 93.3 % agreed that practice activities facilitated their theoretical understanding and application. Our industry-education-research collaborative model demonstrably improves medical students’ capabilities in data mining and intelligent technologies, offers strong replicability and scalability, and provides practical guidance for curriculum reform under the New Medical Science paradigm.
Key words: Industry-Education-Research Collaborative; New Medical Education Initiative; Medical Data Mining; Interdisciplinary Talent Cultivation提交时间:2025-09-01
版权声明:作者本人独立拥有该论文的版权,预印本系统仅拥有论文的永久保存权利。任何人未经允许不得重复使用。 -
图表
-
李学沧, 钱凤翠. 医工结合背景下的医学信息专业产学研协同育人体系研究. 2022. doi: 10.12201/bmr.202207.00013
孙月萍, 侯丽, 刘燕, 康宏宇, 郭臻, 李姣. 新医科背景下的智能思政研究——以“计算机导论”课程为例. 2024. doi: 10.12201/bmr.202409.00025
何小峰, 贺培凤. 医信融合-信息赋能医学人才培养的创新实践. 2023. doi: 10.12201/bmr.202305.00019
肖凯, 王朋, 张静. 1新媒体环境下医学院校图书馆媒介素养教育研究. 2021. doi: 10.12201/bmr.202110.00025
肖瑞, 蔡晓鸿, 胡芳, 马利. 智能医学背景下“医工融合”型一流专业人才培养模式探索—以医学信息工程专业为例*. 2024. doi: 10.12201/bmr.202406.00010
刘奇. 新工科背景下医学信息工程专业建设. 2023. doi: 10.12201/bmr.202303.00012
熊荣华, 申东东, 孙未冉, 李萍, 沈丽宁. “三全育人”就业导向下医学图书情报专业硕士“三环四链” 双师协同培养体系构建. 2025. doi: 10.12201/bmr.202509.00064
潘晓璇. 机遇与创新:医学信息素养教育发展新态势. 2021. doi: 10.12201/bmr.202111.00008
李艳玲, 邱五七, 田荣, 孙红燕, 王曦, 李晓萌. 我国医学信息学人才培养探讨. 2022. doi: 10.12201/bmr.202210.00005
付映宏, 李丹, 信伟华, 鲁杨, 杨红. 医学院校信息管理与信息系统专业创新人才培养模式探索. 2021. doi: 10.12201/bmr.202111.00007
-
序号 提交日期 编号 操作 1 2025-06-30 bmr.202509.00006V1
下载 -
-
公开评论 匿名评论 仅发给作者
引用格式
访问统计
- 阅读量:61
- 下载量: 0
- 评论数:0