弓孟春, 李雨杭, 马永慧, 弓凯, 刘超, 欧阳自豪, 戴辉. 生成式医学人工智能(GMAI)的临床伦理治理:三维协同路径与中国实践. 2025. biomedRxiv.202511.00057
生成式医学人工智能(GMAI)的临床伦理治理:三维协同路径与中国实践
通讯作者: 戴辉, 13889903995@139.com
DOI:10.12201/bmr.202511.00057
Clinical Ethical Governance of Generative Medical Artificial Intelligence (GMAI): A Three-Dimensional Collaborative Pathway and Chinese Practices
Corresponding author: Dai hui, 13889903995@139.com
-
摘要:目的 / 意义揭示生成式医学人工智能(GMAI)在临床应用中的算法黑箱、责任模糊等核心伦理挑战,构建适配中国医疗场景的伦理治理体系,为平衡 GMAI 技术创新与伦理约束、推动医疗 AI 高质量发展提供理论支撑与实践参考。方法 / 过程基于中国医疗体系、数据生态及文化特点,对比中外 GMAI 治理场景差异;从技术、制度、社会三维度构建协同治理框架,结合患者、医生、技术平台等多主体责任分析,细化联邦学习、分级监管、伦理沙盒等关键实践路径。结果 / 结论提出 “技术安全保障 - 制度动态规制 - 社会多元共治” 的 GMAI 临床伦理三维协同治理方案:技术层通过联邦学习实现数据安全共享,制度层建立 “高风险严控、低风险宽管” 分级监管机制,社会层融入伦理沙盒与多元共治模式。该方案可有效回应中国场景下 GMAI 治理特殊性需求,为全球医疗 AI 伦理治理提供可借鉴的中国实践经验,未来需进一步优化基层数字鸿沟破解及动态责任机制司法衔接等问题。
Abstract: Purpose/SignificanceThis study aims to address core ethical challenges such as algorithmic black boxes and ambiguous liability in the clinical application of Generative Medical Artificial Intelligence (GMAI), construct an ethical governance system adapted to China’s healthcare context, and provide theoretical support and practical references for balancing GMAI technological innovation with ethical constraints to promote the high-quality development of medical AI.Methods/ProcessBased on the characteristics of China’s healthcare system, data ecosystem, and cultural context, this paper compares differences in GMAI governance scenarios between China and other countries. A three-dimensional collaborative governance framework (technology, institution, and society) is established, with a detailed analysis of the responsibilities of multiple stakeholders including patients, physicians, and technology platforms. Key practical pathways such as federated learning, hierarchical supervision, and ethical sandboxes are elaborated.Results/ConclusionsA three-dimensional collaborative governance scheme for GMAI clinical ethics is proposed: technological security guarantee - dynamic institutional regulation - multi-stakeholder social governance. At the technical level, federated learning enables secure data sharing; at the institutional level, a hierarchical supervision mechanism of strict control for high-risk applications and flexible management for low-risk ones is established; at the social level, ethical sandboxes and multi-stakeholder governance models are integrated. This scheme effectively responds to the specific needs of GMAI governance in the Chinese context and provides replicable Chinese practices for global medical AI ethical governance. Future efforts should focus on bridging the digital divide at the grassroots level and optimizing the judicial connection of dynamic liability mechanisms.
Key words: AI medical ethics; federal learning; gradient penetration governance; dynamic responsibility mechanism; Chinese practice提交时间:2025-11-20
版权声明:作者本人独立拥有该论文的版权,预印本系统仅拥有论文的永久保存权利。任何人未经允许不得重复使用。 -
图表
-
史森中. 生成式人工智能(GAI)基层医疗应用风险及治理策略分析. 2024. doi: 10.12201/bmr.202408.00053
孟冬晴, 吕文娟. 生成式人工智能赋能医学图书馆知识服务的路径研究. 2025. doi: 10.12201/bmr.202510.00039
王茜, 刘湘闽, 陈凌云, 方安. 美国国立卫生研究院AI就绪数据治理实践研究. 2025. doi: 10.12201/bmr.202505.00026
黄晗琦, 周曼慈, 杨惠雯, 王睿智, 王若佳. 社会公众视角下医疗人工智能应用的伦理风险研究*. 2025. doi: 10.12201/bmr.202511.00062
中国科学技术信息研究所, 北京市海淀区复兴路号. 基于生成式人工智能的医学视频创作路径探究. 2025. doi: 10.12201/bmr.202508.00005
阮晓龙. 产教研医协同育人机制下中医药院校智能医学工程专业建设的探索与实践. 2025. doi: 10.12201/bmr.202511.00007
赵锐, 石秀园, 钟雪然, 任平, 田雪晴, 刘春平, 游茂. 基于卫生技术评估构建医学人工智能技术临床应用评估路径的探讨. 2022. doi: 10.12201/bmr.202203.00005
李韬, 冯贺霞. 人工智能在医疗健康领域中的创新应用、风险挑战与治理对策. 2025. doi: 10.12201/bmr.202501.00067
向艾宁堃, 田靖雪, 胡德华, 刘海霞. 生成式人工智能对于老年糖尿病应答效能的比较研究. 2025. doi: 10.12201/bmr.202503.00019
马文雯, 李超凡, 刘聪慧, 孙强. 我国医防协同政策文本量化分析——基于政策工具、协同层次和协同机制的三维框架. 2022. doi: 10.12201/bmr.202209.00007
-
序号 提交日期 编号 操作 1 2025-08-30 10.12201/bmr.202511.00057V1
下载 -
-
公开评论 匿名评论 仅发给作者
引用格式
访问统计
- 阅读量:20
- 下载量: 0
- 评论数:0

登录
注册




京公网安备